# Dynamic Power System State Estimation Using Combined Load Forecasting and Kalman Filtering

Ellery Blood - ellery@cmu.edu, Marija Ilić - milic@ece.cmu.edu, Bruce Krogh - krogh@ece.cmu.edu

Carnegie Mellon University Electrical and Computer Engineering 5000 Forbes Avenue, Pittsburgh, PA 15232

### Abstract

The state estimators on today's electric power transmission system operate on measurements taken from a single snapshot and perform estimation statically. We propose that improvements in robustness and accuracy can be realized through use of time history data via discrete-time dynamic state estimation using a dynamic model based on the power-flow balancae equations. Further use of this model incorporating load forecast information to enable state prediction is explored.

### **Problems and Goals**

#### State Estimation Error comes from

- Measurement errors
- Model topology errors
- Model parameter errors

### **Existing State Estimators**

- Use only present measurements (no time history)
- Use the previous state estimate as a starting point for the present solution (assuming the previous state is closer to the present state than flat start)

### We are developing dynamic state estimation methods that will

- Improve state estimator accuracy by using load forecast data and previous estimate
- Improve estimator robustness by decreasing effect of sporadic bad data on the estimate
- Provide an estimate of the future state allowing advance warning of operating limit violations

### **References and Acknowledgments**

- 1. EA. Blood, BH. Krogh, MD. Ilić, "Electric Power System Static State Estimation through Kalman
- Filtering and Load Forecasting", Transactions of IEEE PES, July 2008 General Meeting (Accepted)

  P. Rousseaux, Th Van Cutsem, TE Dy Liacco, "Whither Dynamic State Estimation", Int. Journal of
- Electrical Power and Energy Systems, Vol 12, 1990, pp. 104-116

  3. AM. Lette da Silva, MB Do Coutto Filho, JMC. Cantera, "An efficient dynamic state estimation algorithm including bad data processing", IEEE Transactions on Power Systems, Vol. PWRS-2, No. 4 Nov 1987, pp 1050-1058
- BM Bell, FW Cathey, "The iterated Kalman filter update as a Gauss-Newton Method", IEEE Transactions on Automatic Control, Vol 38, No. 2, Feb 1993
- RD. Masiello, FC Schweppe, "A tracking state estimator", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-90, iss. 3, pp. 1025-1033, May-June 1971
- AS. Debs, RE Larson, "A dynamic estimator for tracking the state of a power system", IEEE
   Transactions on Power Apparatus and Systems, Vol. PAS-89 iss. 7, pp. 1670-1678, Sept-Oct 1970.
- Transactions on Power Apparatus and Systems, Vol. PAS-89, iss. 7, pp. 1870-1878, Sept-Oct 1970
  K. Shih, S. Huang, "Application of a Robust Algorithm for Dynamic State Estimation of Power Systems based on M-Estimation and Realistic Modeling of System Dynamics", IEEE Transactions on Power Systems, vol. 13, No. 4, Nov 1998
- K. Clements, Ilya W. Slutsker, Sasan Mokhtari, "Real Time Recursive Parameter Estimation in Energy Management Systems", IEEE Transactions on Power Systems, Vol. 11, No. 3, August 1996

#### This research funded in part by

The National Science Foundation (CCR-0325892, SES-034578, SNC-042804) U.S. Department of Energy, National Energy Technology Laboratory (DE-AM26-04NT41817.305.01.21.002)

## Electric Energy Systems Group http://www.eesg.ece.cmu.edu

### **Methodology**

#### State Estimation

Process the vector of measurements,

$$\mathbf{z} = [\mathbf{z}_1 \quad \cdots \quad \mathbf{z}_M] = [\mathbf{h}_1(\mathbf{x}) \quad \cdots \quad \mathbf{h}_M(\mathbf{x})] + \text{noise}$$

consisting of

Voltage magnitudes

Real and reactive power injections (Pi+jQi)

Real and reactive power flows (Pik +jQik)

Current flow magnitudes (Ii)

to find the best estimate of the state, x

$$\mathbf{x} = [\delta_1 \quad \cdots \quad \delta_N \quad \mathsf{V}_1 \quad \cdots \quad \mathsf{V}_1]^\mathsf{T}$$

### New Dynamic Model

Several algorithms exist to generate load forecasts. We can use this information to give us an idea of what X will be when the next set of measurements is available. Forming a vector of the loads

$$\mathbf{u} = [P_1 \quad \cdots \quad P_N \quad Q_1 \quad \cdots \quad Q_1]^T$$

we can analyze the interplay between u and x via the Load(Power)-Flow balance equations.

$$f_{i}(\boldsymbol{x}, \boldsymbol{u}) = V_{i}e^{j\delta_{i}} \sum_{k=1}^{N} (Y_{ik}V_{k}e^{j\delta_{k}}) - (P_{i} + jQ_{i}) = 0$$

Incremental change in load ( $\Delta u$ ) leads to incremental change in state ( $\Delta x$ )

The increment is approximated by linearizing of the Power-Flow Equations

$$\label{eq:Jdx} \begin{split} J dx &= du \qquad J = \frac{\partial f(x,u)}{\partial x} \\ x_{t+Ts} &= x_t + J^{-1} \big( u_{t+Ts} - u_t \big) \end{split}$$

#### Iterated Kalman Filter (IKF)

The Kalman filter combines information from the state forecast and measurements in four steps:

1) Predict X using dynamic model

$$x_{t+Ts/t} = x_{t/t} + J^{-1} (u_{t+Ts} - u_t)$$

- 2) Update state prediction covariance
- 3) Update state estimate using measurements

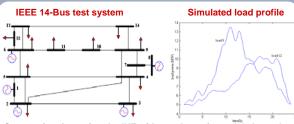
$$x_{t+Ts/t+Ts} = x_{t+Ts/t} + K (z_{t+Ts} - h(x_{t+Ts/t+Ts}))$$

4) Update state estimate covariance

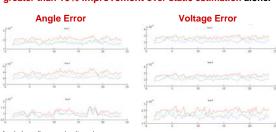
The IKF improves over Extended Kalman filter by making repeated corrections to account for nonlinearities in measurements.

$$\begin{split} \boldsymbol{H} &= \frac{\partial \boldsymbol{h}(\boldsymbol{x})}{\partial \boldsymbol{x}} \\ \boldsymbol{x}^{k+1}_{t+Ts/t+Ts} &= \boldsymbol{x}_{t+Ts/t} + \boldsymbol{K} \; (\boldsymbol{z}_{t+Ts} - \boldsymbol{h}(\boldsymbol{x}^k_{t+Ts/t+Ts}) - \boldsymbol{H}(\boldsymbol{x}_{t+Ts/t} - \boldsymbol{x}^k_{t+Ts/t+Ts})) \end{split}$$

### **Example**



State estimation using the IKF with our dynamic model showed greater than 10% improvement over static estimation alone.



Angle in radians and voltage in p.u..

Key: (Static State Estimator) (Static Augmented Estimator) (Dynamic State Estimator)

### **Future Work**

### Bad data detection

Bad data detection based on residuals: h(X)-z.

Many residuals are "smeared" due to the bad data, making identification difficult.

Dynamic model gives a baseline for comparison in identifying bad data (i.e., an independent check of data integrity).

### **Network parameter estimation**

Dynamic model allows correlation of parameter data between estimates

Provides additional redundancy to enable parameter estimation that is unavailable in static estimation.

### **Network topology error identification**

Dynamic model aids in distinguishing whether large measurement residuals are due to bad data or changes in topology.

